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About me

 Ph.D., Architectural Engineering from Drexel
University

« B.Arch. from Carnegie Mellon University

« 2014 - DOE Building Technologies Office (BTO)
EERE Science & Technology Policy (S&TP) Fellow

Roles as an EERE S&TP Fellow in BTO:
— Lead technology impact analysis (co-developer of Scout)
— Co-lead the BTO Catalyst Prize Program

— Support Sensors and Controls program funding and planning
— Proposal review (BTO, ARPA-E), workshop planning
— Quadrennial Technology Review Buildings chapter



What we'll cover

Simulation programs that enable better decision-
making about energy efficient building design and
operation at multiple scales of focus

Part 1: Building occupant scale - HABIT

Software for estimating the occupant-level Indoor
Environmental Quality (IEQ) and energy use impacts of
building operation strategies, given realistic occupant behavior

Part 2: National building stock scale - Scout
Software for estimating the national energy and carbon savings
impacts of building energy efficiency measures
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HABIT: A framework for occupant
behavior, comfort, and energy
co-simulation

Ph.D. thesis work performed at Drexel University under
advisor Dr. Jin Wen, with funding from a National
Science Foundation Graduate Research Fellowship
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The problem: occupants affect building
performance but are not easily modeled

Occupants’ behaviors are at the energy/IEQ nexus

Behaviors have many possible drivers, vary by context

Existing behavior models are mostly ‘top-down’, group-level,
and only consider external drivers (e.g., temperature)

Driver: Thermal Comfort
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HABIT represents behavior from the

bottom up, at the individual level
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Individual-level thermal sensation and
acceptability models are developed

Thermal sensation distribution

Prob (individual sensation vote) =
f(Predicted Mean Vote)
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Thermal acceptability distribution

Prob (individual sensation unacceptable)
= f(individual sensation, season)
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Langevin et al, “Modeling Thermal Comfort Holistically”, Building and Environment, 2013
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Long-term thermal comfort and behavior
outcomes are observed in the field

The Friends Center, Philadelphia, PA

 LEED Platinum (2009), medium-sized air-conditioned
» Range of behaviors, Building Monitoring System
* Final sample: 24 occupants

Environmental Measurements, Window State Measurements,
Plug Load Measurements
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Proportion of Fans On

Behavior associates with thermal
acceptability range and Is sequenced
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Field findings and individual comfort
models inform an agent-based model

* Individual occupant =

simulated ”agent" Acceptable Range Comparison*

Current Sensation
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Langevin et al, “Simulating the human-building interaction”, Building and Environment, 2015 10



The agent model performs well against
field data, other behavior models

Within-Day Fans ON Patterns (Summer)
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The behavior model i1s co-simulated with

a whole building energy model

« BCVTB co-simulates behavior and EnergyPlus models
 Each run repeated multiple times (probabilistic elements)
« Simulation is configured from an Excel spreadsheet

; START
Simulation
/ . runr=1

Initialize

Langevin et al,

-------

variables

Begin simula-

BCVTB Enwronment

Zone Behavioral Outcomes, time t; t= t+1

tion runr

Simulation
end time?

Zone Environmental
Condztzons time t

EnergyPlus

r=r+1 | YES

Max run
reached?

“Quantifying the human-building interaction”, Energy and Buildings, 2015
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The HABIT behavior/energy co-
simulation tool has multiple use cases

* Prospective building design and operation

— Near-term application: behavior and IEQ factored into
whole building energy simulations

— Long-term application: Model Predictive Control of
occupant-centered sensor networks

« Building efficiency policy making
— Near-term application: Quantifying stock-wide energy/CO,

benefits of behavior efficiency measures

— Long-term application: Quantifying stock-wide non-energy/
CO, benefits of behavior efficiency measures (e.g.,
productivity costs)



A HABIT case study: The energy, IEQ,
and cost implications of wider set points

* Run seven behavior scenarios on EnergyPlus medium office
reference model; last four widen thermostat set points

« Simulated with Philadelphia weather file for January and July

# Name Clothing Fans Heaters Thermst. Window
1 Baseline (B) N/A N/A N/A N/A N/A
2 Restricted (R) — +15W  +1200 W [EEECN 25X infil
3 Unrestricted (UR) - +15 W +1200 W 21; 24°C +25X infil.
4 Wider Set Points (WSP) - +15' W +800 W +25X infil.
Wider Set Points + Educate L
5 (WSPe) — +15W +600 W +25X infil.
Wider Set Points (Moderate) e
6 (WSP2) - +15 W +800 W +25X infil.
Wider Set Points (Extreme) -
7 (WSP3) - +15 W +800 W +25X infil.
1 Shown are heating set point in January; cooling set point in July.
Unrestricted w/ education Restricted by management
Unrestricted completely - Restricted by management + others in space

Langevin et al, “Quantifying the human-building interaction”, Energy and Buildings, 2015



Case study outputs span energy, |IEQ,
and cost-benefit categories

Category Metric Calculation

Energy Use Intensity
Note: HVAC + personal heater/fan use

Energy kWh/sq.m.

Comfort % Thermal Unacceptability # Time Steps Uncomfortable w/ no Remedy
Total # Time Steps
. % Work Underperformance 100 — Relative Performance %
Productivity Note: warmer = suboptimal (Jensen et al, 2009)
N
: R
Cost-Benefit Net Present Value (NPV) - 10 yr. a +tl_)t
t=0
NPV1 Energy $
NPV2 Energy + Carbon $
NPV3  Note: + 1% annual Enerqy + Carbon + Productivity $

underperformance ~ $75,000

Langevin et al, “Quantifying the human-building interaction”, Energy and Buildings, 2015



Wider set points look good from the

energy and |IEQ perspectives - to a point
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Wider set points look good from the

energy and |IEQ perspectives - to a point
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Local heaters look bad while fans look
good from a financial perspective

« NPV1-Energy $
« NPV2 - Energy + Carbon $
« NPV3 - Energy + Carbon + Productivity $

NPV BEHAVIOR SCENARIO
SEASON yietHoD B R UR SPF SPFe SPF2 SPF3
NPV1 $0 $13,986  -$23,363  -$13,121  -$10,106  -$10,352 -$6,190
(+/- $1,810) (+/- $1,884) (+/- $925) (+/- $866) (+/- $813) (+/- $1,226)
Heating NPV2 $0 -$19,944 -$34,674 -$18,990 -$14,244 -$14,964 -$8,856
Season (+/-$2,791)  (+/-$2,908)  (+/-$1,414)  (+/-$1,320)  (+/-$1,236)  (+/-$1,852)
NPV3 $0 -$52,001 [F$809120 -$54,150  -$43,586  -$42,786  -$26,061
(+/-$21,333)  (+/-$27,630)  (+/- $69,401)  (+/-$19,862) (+/-$19,778)  (+/- $20,394)
NPVT $0 -$9,822 $13,433  $20,454 $21,165 $27,400 $37,080
(+/- $1,351) (+/- $1,801) (+/- $1,801) (+/- $901) (+/- $1,351) (+/- $901)
Cooling = ppy2 $0 $12,807  -$18,425  $34,306 $35,412 $45,114 $60,176
Season (+/- $2,102) (+/- $2,803) (+/- $2,803) (+/- $1,402) (+/- $2,102) (+/- $1,402)
NPV3 $0 $2,832 $18,304  -$73,776  -$/8,455 | -$137,443

(+/-$26,825)  (+/- $33,706)  (+/- $46,067)  (+/- $44,666)  (+/-$39,186)  (+/- $44,666)

* 95 % prediction bounds italicized in parentheses

Langevin et al, “Quantifying the human-building interaction”, Energy and Buildings, 2015 18
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Scout: An impact analysis tool for
building energy efficiency technologies

Post-doctoral work performed at the U.S. Department of
Energy in collaboration with AAAS Fellow Dr. Chioke
Harris under mentors Dr. Patrick Phelan and Dr. Amir Roth



The problem: many efficient
technologies, multiple perspectives

20



Scout establishes a common framework
for efficiency measure impact estimation

|
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Scout applies individual efficiency
measures across the U.S. building stock

Measure
Consumer compe-
adoption .-
assumptions tition
module
Energy EIA baseline Market Output
efficient equipment definition —— summary
measures properties module module
T
EPlus/Open- EIA baseline .
Studio Y equipment Savm_gs/
Measures stock/energy | metrics
calculation
module
Thermal Census-
load climate zone
components conversions . Input

Analysis
engine

Measure
energy and
CO, markets

Measure
energy and
CO,savings

Measure
financial
metrics

. Output

External
data source
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Measures can be packaged and
assigned input uncertainty

Compete individual and packaged measures

$1850

=€ Cost: $1850 >

W i Performance: 2 EF .
) | Cost Measure energy/

,  Lifetime: 13 years C0, impact
2

p(Cost)
p(impact)
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Measures apply to baselines drawn
from EIA Annual Energy Outlook

Data reported for each year from 2009 to 2040
Equipment Adoption Model

Energy Use Building Stock Characteristics Parameters
o U
= Yy

Building Type Climate Zone End Use Fuel Type Technology
\Ab j <E @ 8
= Ii L
'n ] =L H paq —
f—— o @
[19 oo()oo M \—/
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Baseline data define building and
equipment stocks and flows

Year Y
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Measures diffuse into markets under
three adoption scenarios

Total baseline market (Year Y)
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baseline baseline
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Measures diffuse into markets under
three adoption scenarios

Technical Potential Scenario: Total market fully captured
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Measures diffuse into markets under
three adoption scenarios

Maximum Adoption Scenario: Competed market fully captured
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Measures diffuse into markets under
three adoption scenarios

Adjusted Adoption Scenario: Competed market partially captured
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Adoption scenarios determine measure

diffusion rates over time

Y+2 Y+3 Y+4

Y+1
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Competing measures are attributed
shares of the competed baseline

M1 . M2 M3 Measure market shares determined
..................... by per unit capital/operating costs
Cap$ Op$ Cap$ Op$ Cap$ Op$ *(based on NEMS adoption models)

""""
........
““““

@)
Competed Captured Captured Captured
baseline (MT) (M2) (M3)



Results can show the effect of package
measures, uncertainty

R: EStar 2010-2015 CFL Reflectors R: EStar 2010-2015 Electric WH R: SEER 21 CAC
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Measure cost-effectiveness and impacts
vary widely

Cost of Conserved Energy ($/MMBtu)

70— T R: VIP in Walls (N)
(CCE = $662)
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End use potential impacts are
Influenced by the measure portfolio

2030 Energy Savings (Quads, Primary)
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Interactive web tools using model input
data and results are forthcoming

Market Calculator

Determine the energy use associated with building components, equipment, and other end uses in residential and commercial
buildings.

The Market Calculator yields the estimated energy use and CO, emissions associated with losses through the building envelope and
appliances and devices within residential and commercial buildings in the United States. The energy use and CO; emissions can be
divided by building type, climate zone, technology type, and other factors indicated below. CO, emissions reported here do not include
direct emissions associated with losses of working fluids from heating, cooling, water heating, and refrigeration systems. 0

Market Size Update

To obtain an estimate for a market or markets of interest, the appropriate definitions must be selected below. In each category shown,

‘ _ - A - : - TBTU (primary energy)
at least one selection must be made to yield a complete market definition. In some categories, multiple selections are permitted.

Categories where multiple selections are allowed are indicated as such. Selections for the relevant groups are made by simply clicking 0
the appropriate terms. Selected terms are highlighted, and clicking them again will remove them from the chosen market segment.
Follow the numbered steps below, making the desired selections at each step. Once selections have been made in each category, click MMT CO,

the 'Update’ button in the Market Size box on the right side of the screen to get the energy use in the selected market and the
associated CO, emissions.

The underlying data for this calculator are from the 2015 Annual Energy Outlook (AEO) (7' released by the U.S. Energy Information
Administration (EIA). (2!

1. Choose a projection year 2030 $
2. Select all relevant AIA climate zones lalnZaladaladalnd
2 Mhnnea racidantial ar rcammareial hiildinae Residential =~ Commercial

https://trynthink.github.io/scout/calculator.html
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Multiple areas have been identified for
future development

Improved representation of consumer adoption dynamics
PUTTRUYT RPTeUYRY

Modeling potential for peak demand reductions

’H g El O

Non-energy benefits

* &
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Slide 1: United States (Bohdan Burmich)

Slide 20: LED (Nikita Kozin); Water heater (Michael Thompson); Air
conditioning unit (Arthur Shlain); Fan (Edward Boatman); Refrigerator
(shashank singh); Washing machine (Ed Harrison); Window (Arthur Shlain);
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Slide 24: Energy (Edward Boatman); Buildings, Mosque, House (Creative Stall);
School (Tran); Plug (Arthur Shlain); Flame (Samuel Q. Green); Propane Tank
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